Electric and Hybrid Cars – FAME, National Electric Mobility Mission, etc.

Explained: National Hydrogen Energy Mission (NHEM)

Recently, the Finance Minister in her budget speech formally announced the National Hydrogen Energy Mission which aims for generation of hydrogen from green power resources.

Background

  • With this announcement, India has made an uncharacteristically early entry in the race to tap the energy potential of the most abundant element in the universe, hydrogen.
  • The proposal in the Budget will be followed up with a mission draft over the next couple of months — a roadmap for using hydrogen as an energy source.
  • The mission would have a specific focus on green hydrogen, dovetailing India’s growing renewable capacity with the hydrogen economy.

Hydrogen as an element

  • The most common element in nature is not found freely.
  • Hydrogen exists only combined with other elements and has to be extracted from naturally occurring compounds like water (which is a combination of two hydrogen atoms and one oxygen atom).
  • Although hydrogen is a clean molecule, the process of extracting it is energy-intensive.
  • The sources and processes, by which hydrogen is derived, are categorised by colour tabs.

Its types as fuel

  • Hydrogen produced from fossil fuels is called grey hydrogen; this constitutes the bulk of the hydrogen produced today.
  • Hydrogen generated from fossil fuels with carbon capture and storage options is called blue hydrogen; hydrogen generated entirely from renewable power sources is called green hydrogen.
  • In the last process, electricity generated from renewable energy is used to split water into hydrogen and oxygen.

Hydrogen for mobility

  • While proposed end-use sectors include steel and chemicals, the major industry that hydrogen has the potential of transforming is transportation.
  • This sector contributes a third of all greenhouse gas emissions, and where hydrogen is being seen as a direct replacement of fossil fuels, with specific advantages over traditional EVs.
  • Hydrogen fuel cell cars have a near-zero carbon footprint.
  • Hydrogen is about two to three times as efficient as burning petrol because an electric chemical reaction is much more efficient than combustion.

We already had H-CNG!

  • In October 2020, Delhi became the first Indian city to operate buses running on hydrogen spiked compressed natural gas (H-CNG) in a six-month pilot project.
  • The buses will run on a new technology patented by Indian Oil Corp for producing H-CNG — 18 per cent hydrogen in CNG — directly from natural gas, without resorting to conventional blending.

Try this PYQ from CSP 2019:

In the context of proposals to the use of hydrogen-enriched CNG (H-CNG) as fuel for buses in public transport, consider the following statements :
1. The main advantage of the use of H-CNG is the elimination of carbon monoxide emissions.
2. H-CNG as a fuel reduces carbon dioxide and hydrocarbon emissions.
3. Hydrogen up to one-fifth by volume can be blended with CNG as fuel for buses.
4. H-CNG makes the fuel less expensive than CNG.
Which of the statements given above is/are correct?
(a) 1 only
(b) 2 and 3 only
(c) 4 only
(d) 1, 2, 3 and 4

Green hydrogen has specific advantages

  1. One, it is a clean-burning molecule, which can decarbonize a range of sectors including iron and steel, chemicals, and transportation.
  2. Two, renewable energy that cannot be stored or used by the grid can be channelled to produce hydrogen.
  • This is what the government’s Hydrogen Energy Mission, to be launched in 2021-22, aims for.

Philosophy behind NHEM

  • India’s electricity grid is predominantly coal-based and will continue to be so.
  • In several countries that have gone in for an EV push, much of the electricity is generated from renewables — in Norway for example, it is 99 per cent from hydroelectric power.
  • Experts believe hydrogen vehicles can be especially effective in long-haul trucking and other hard-to-electrify sectors such as shipping and long-haul air travel.
  • Using heavy batteries in these applications would be counterproductive, especially for countries such as India, where the electricity grid is predominantly coal-fired.

Back2Basics: How hydrogen fuel cells work?

  • Hydrogen is an energy carrier, not a source of energy.
  • Hydrogen fuel must be transformed into electricity by a device called a fuel cell stack before it can be used to power a car or truck.
  • A fuel cell converts chemical energy into electrical energy using oxidizing agents through an oxidation-reduction reaction.
  • Inside each individual fuel cell, hydrogen is drawn from an onboard pressurized tank and made to react with a catalyst, usually made from platinum.
  • As the hydrogen passes through the catalyst, it is stripped of its electrons, which are forced to move along an external circuit, producing an electrical current.
  • This current is used by the electric motor to power the vehicle, with the only byproduct being water vapour.

  Issues with H-Fuel cells

  • A big barrier to the adoption of hydrogen fuel cell vehicles has been a lack of fuelling station infrastructure.
  • There are fewer than 500 operational hydrogen stations in the world today, mostly in Europe, followed by Japan and South Korea.
  • Safety is seen as a concern. Hydrogen is pressurized and stored in a cryogenic tank, from there it is fed to a lower-pressure cell and put through an electrochemical reaction to generate electricity.
  • Scaling up the technology and achieving critical mass remains the big challenge.
  • More vehicles on the road and more supporting infrastructure can lower costs. India’s proposed mission is seen as a step in that direction.

Join the Community

Join us across Social Media platforms.