Innovations in Biotechnology and Medical Sciences

Zebrafish study reveals how the brain makes its connections

Recent work by researchers at the National Centre of Biological Sciences, Bengaluru, has thrown light on what stimulates the synapses (connection of nerve cells) to form.

What are Synapses?

  • Neurons, or nerve cells, in the brain connect by means of junctions known as synapses through which they transmit signals.
  • There are two types of synapses – chemical and electrical:

(1) Chemical Synapse

  • In this, there is a space of about 20 nanometres between two neurons, and the way they communicate is this: One neuron converts electrical signal into chemical signals.
  • This chemical is released into the synaptic space and the receiving neuron converts the chemical signal back into an electrical signal.

(2) Electrical synapse

  • In these synapses, the two neurons have a physical connection and the conversion of electrical to chemical need not occur, and they communicate directly.
  • Electrical synapses are like a physical wire, communication is faster but they are also fewer in number.

Observing these synapses

  • Researchers from TIFR-National Centre of Biological Sciences, Bengaluru, have chosen Zebrafish as a model organism to study this process.
  • Zebrafish are transparent and neuron development in larval zebrafish can be observed from day to day by injecting a dye or by engineering the fish to express fluorescent proteins.
  • It was observed that electrical synapses are formed before chemical synapses, they are like a blueprint in which neurons make a handshake. This results in the making of chemical synapses.
  • Research on organisms such as leeches showed that if you remove electrical synapses, the chemical synapses do not form.
  • However, the mechanism of how it happens in higher organisms such as vertebrates was not known.

What induces these synapses?

  • The group observed that knocking out a particular protein known as the gap junction delta 2b (gjd2b) in the cerebellum of zebrafish affected levels of the enzyme CaMKII.
  • Levels of CaMKII were seen to increase in the Purkinje neurons in the cerebellum.
  • These neurons and the cerebellum itself control coordination of movements in the organism.

Why study this?

  • In humans for example, excess abuse of alcohol leads to damage of these cells, which results in lack of coordination in movement.
  • The cerebellum shows an evolutionary continuity in all vertebrates, so, too, the Purkinje neurons.
  • Even though fish and humans diverged from a common ancestor about 500 million years ago, the cerebellum has been evolutionarily conserved.
  • While zebrafish have about 300-400 Purkinje neurons, humans have thousands of these.

 

UPSC 2022 countdown has begun! Get your personal guidance plan now! (Click here)


Join the Community

Join us across Social Media platforms.

💥UPSC 2026, 2027 UAP Mentorship - June Batch Starts
💥UPSC 2026, 2027 UAP Mentorship - June Batch Starts